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FFermilab  Superconducting RF Cavities
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* Muscle of many large particle accelerators
* RF input power = accelerating electric field

Image from linearcollider.org 2



& Fermilab SRF Accelerator Cavity

* SRF cavity: high quality EM resonator
* Particle beam gains energy as it passes through

1 Input RF power at 1.3 GHz

Slowed down by factor of approximately 4x10°

* Electric field provides acceleration
* Magnetic field can’t be avoided



2 Fermilab  Superconductors and Magnetic Fields

* How high in field can we take SRF cavities?

 State of the art niobium cavities are limited by
peak surface magnetic field




¢ Fermilab  Superconductors and Magnetic Fields

* For relatively small
applied magnetic fields,
superconductors expel
flux: Meissner state

* At higher fields, Type Il |
superconductors allow flux
to enter in packets: Vortex  "yng |

state

Images from Wikipedia and Rose-Innes and Roderick, Introduction to Superconductivity



¢ Fermilab  Superconductors and Magnetic Fields

* For relatively small
applied magnetic fields,

superconductors expel
_ fliiv: NMoicecnarctata

Avoid flux penetration.
At RF frequencies =2
excessive heating

state

Images from Wikipedia and Rose-Innes and Roderick, Introduction to Superconductivity



& Fermilab Superheating Field

(Note: Magnetization curve for H increasing only)

Meissner s
state
|

Meissner state (metastable)

H

* Flux free Meissner state is stable up to H_,
* Favorable for flux to be deep in bulk above H_,

 BUT surface energy barrier allows metastable
state!



& Fermilab Superheating Field

Why a superheating field?

\: B-field decay constant

ooper pair
teraction
distance

— H Field gain
— Total Energy
— Condensation

Energy cost: creation of normal
conducting vortex core 5
Energy benefit: flux from high | Depth X
magnetic field region into low
magnetic field region

Costly core £ enters first;
gain from field A later

Slide adapted from J. P. Sethna 8



a¢ Fermilab Selected Superconductors

* NbTi (magnet quality):
* Lots of pinning centers—H_, ~15T
* T.~9-10 K, ductile

* Niobium (SRF quality):
* Robust barrier to magnetic flux—H,, ~0.2 T
* T.~9 K, ductile

* Nb,Sn (can be either!):
* Can be made with pinning centers—H_, ~ 30T
* Predicted robust barrier to flux—H,, ~0.4 T?
* T.~18 K, brittle



2% Fermilab Fabrication of SRF Cavities

e Used in accelerators: Pb and Nb, either bulk
or sputtered

* Many film deposition methods researched:
ECR, ALD, CVD, HPCVD, MOCVD, HiPIMS, e-
beam, thermal vapor diffusion, liquid
diffusion, co-sputtering+annealing, cathodic
arc deposition

* Many alternative superconductors
considered



Experimental Properties
of Promising Materials

Material | A(0) [nm] | §(0) [nm] | B,, [mT] | T.[K] | p,(0) [wQcm]
Nb 50 22 210 9.2 2

2= Fermilab

Nb,Sn 111 42 | 410 | 18 8
MgB, 185 4.9 210 | 40 | 0.1
NbN 375 2.9 160 16 144

Parameters for: Nb from [1] assuming RRR = 10; Nb;Sn from [2]; NbN from
[3]; MgB,, from [4] and [5]. B, for Nb found from equation in [6] and for others

calculated from [7]. B, used to calculated B, found from [8] eq. 4.20.

1] B. Maxfield andW. McLean, Phys. Rev. 139, A1515 (1965).

2] M. Hein, High-Temperature Superconductor Thin Films at Microwave Frequencies (Berlin: Springer, 1999).

3] D. Oates, et al., Phys. Rev. B 43, 7655 (1991).

4] Y. Wang, T. Plackowski, and A. Junod, Physica C 355, 179 (2001).

5] X.X. Xi et al., Physica C, 456, 22-37 (2007).

6] A. Dolgert, S. Bartolo, and A. Dorsey, Erratum [Phys. Rev. B 53, 5650 (1996)], Phys. Rev. B 56, 2883 (1997).
7] M. Transtrum, G. Catelani, and J. Sethna, Phys. Rev. B 83, 094505 (2011).

8] M. Tinkham, Introduction to Superconductivity (New York: Dover, 1996).

Material parameters vary with fabrication. References were
chosen to try to display realistic properties for polycrystalline films.
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& Fermilab Multilayer Films

» Alternative geometries considered, including
multilayer SIS’ films studied in depth

* No significant increase predicted for
maximum flux-free field [Posen et al. 2013,
Kubo et al. 2013, Gurevich 2015]

Insulating layers
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Thin layers of alternative superconductor
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Images adapted from A. Gurevich, APL 012511 (2006)


http://scitation.aip.org/content/aip/journal/apl/88/1/10.1063/1.2162264
http://accelconf.web.cern.ch/AccelConf/SRF2013/papers/weioc04.pdf
http://arxiv.org/abs/1304.6876
http://arxiv.org/abs/1501.01512
http://arxiv.org/abs/1501.01512
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http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.047001

2% Fermilab DC Flux Penetration
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See Nick Valles’s thesis, Cornell University, 2014



http://www.classe.cornell.edu/Research/SRF/SrfDissertations.html

2% Fermilab DC Flux Penetration
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@ Hall Probe Measurement
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http://www.classe.cornell.edu/Research/SRF/SrfDissertations.html

& Fermilab Q,-drop from DC Magnetic Field

B =0T After B, = 0.3 T

—Measurement Results

— Measurement Results
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Raw data measured by Nick Valles, Cornell University, 2013



& Fermilab Takeaway

e Realistic expectation: B, .. ~ 0.2 T at walls of

Max

superconducting cavity to maintain high Q,

* Alternative materials may increase limit up
to 0.5 T with a few years of development
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2% Fermilab Possible Workaround

e Poloidal field coils

* Large field in cavity
interior

e Smaller field at
walls



